Structural study of TcaR and its complexes with multiple antibiotics from Staphylococcus epidermidis.
نویسندگان
چکیده
TcaR and IcaR are a weak and a strong negative regulator of transcription of the ica locus, respectively, and their presence prevents the poly-N-acetylglucosamine production and biofilm formation in Staphylococcus epidermidis. Although TcaR was shown to interact with the ica promoter, the precise binding region and the mechanism of interaction remained unclear. Here we present the 3D structure of TcaR in its apo form and in complex with salicylate as well as several aminoglycoside and beta-lactam antibiotics. A comparison of the native and complex TcaR structures indicates that the mechanism of regulation involves a large conformational change in the DNA-binding lobe. Here, we deduced the consensus binding sequence of two [ approximately TTNNAA] hexamers embedded in a 16 bp sequence for a TcaR dimer. Six TcaR dimers bind specifically to three approximately 33 bp segments close to the IcaR binding region with varying affinities, and their repressor activity is directly interfered by salicylate and different classes of natural antimicrobial compounds. We also found in this study that the antimicrobial compounds we tested were shown not only to inhibit TcaR-DNA interaction but also to further induce biofilm formation in S. epidermidis in our in vivo assay. The results support a general mechanism for antibiotics in regulating TcaR-DNA interaction and thereby help understand the effect of antibiotic exposure on bacterial antibiotic resistance through biofilm formation.
منابع مشابه
Functional Studies of ssDNA Binding Ability of MarR Family Protein TcaR from Staphylococcus epidermidis
The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG). Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of mu...
متن کاملTcaR–ssDNA complex crystal structure reveals new DNA binding mechanism of the MarR family proteins
The teicoplanin-associated locus regulator (TcaR) regulates gene expression of proteins on the intercellular adhesion (ica) locus involved in staphylococci poly-N-acetylglucosamine biosynthesis. The absence of TcaR increases poly-N-acetylglucosamine production and promotes biofilm formation. Until recently, the mechanism of multiple antibiotic resistance regulator family protein members, such a...
متن کاملبررسی الگوی مقاومت آنتیبیوتیکی و تولید بیوفیلم در ایزولههای استافیلوکوکوساورئوس و استافیلوکوکوساپیدرمیدیس جداشده از عفونتهای بیمارستانی شهر تهران، در سال 1395
Background and Aim: Staphylococci are common pathogens of humans and livestock that able to produce a wide range of diseases. Staphylococcus epidermidis and Staphylococcus aureus are the important factors for biofilm production in patients. This study was designed to determine the ability of biofilm production and the resistance pattern of Staphylococcus epidermidis and Staphylococcus aur...
متن کاملSynergistic Effects of Gold Nanoparticles Mixed with Gentamicin, Erythromycin, Clindamycin, Bacitracin, and Polymyxin B against Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus fae
Background and Objective: The majority of bacterial infections are now treatable using different classes of antibiotics. However, the world has faced a challenge called antimicrobial resistance that will diminish most antibiotics' beneficial impacts. A valuable strategy to prevent this adverse phenomenon is to increase the antibacterial effects of antibiotics using various materials as antibiot...
متن کاملEvaluation of antimicrobial activity of certain combinations of antibiotics against in vitro Staphylococcus epidermidis biofilms
BACKGROUND & OBJECTIVES Staphylococcus epidermidis is the most common pathogen associated with infections of surgical implants and other prosthetic devices owing to its adhesion and biofilm-forming ability on biomaterials surfaces. The objective of this study was to compare susceptibilities of biofilm-grown cells to single antibiotic and in combination with others to identify those that were ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 19 شماره
صفحات -
تاریخ انتشار 2010